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Finite-element methods have been used to examine the elastic properties of continuous-fibre 
reinforced composites. Consideration has been given to the possibilities of using either 
reinforcing or matrix constituents with large negative Poisson's ratios (with values of - 1.0 

v <~ - 0.3). It is shown that a large negative Poisson's ratio.can lead directly to 
considerably enhanced transverse moduli without altering the longitudinal moduli. For 
example, changing the matrix Poisson's ratio from 0.3 to - 0.9 and keeping all other 
constituent properties constant produces an almost four-fold increase in the composite 
transverse modulus. 

I .  In t roduct ion 
Naturally occurring materials exhibit a positive 
Poisson's ratio, which means that under a tensile load 
there is a lateral contraction. There is now increasing 
interest in a new class of materials, termed auxetics or 
auxetic materials, which expand laterally when 
stretched and contract laterally when compressed. 
Several examples now exist of materials demonstrat- 
ing this effect [1 6]. Mechanisms have been identified 
that may operate within the material either macrosco- 
pically [7-9], microstructurally [10, 11] or at the 
molecular level [12] to produce the effect. In all cases 
the effect is produced by non-central forces acting to 
give a bidirectional displacement under the action of a 
unidirectional load. One of the most common ex- 
amples quoted is the re-entrant dovetail shape [8, 12, 
13] which was first used as a model for the behaviour 
of auxetic foams. In this case deformation is by flexure 
of the cell walls. More recently tensile network struc- 
tures have been identified that produce similar effects. 
In all cases the material undergoes an increase in 
volume when stretched. 

The advantages of a negative Poisson's ratio have 
been discussed [1, 14] and include improved shear 
moduli, indentation resistance and plane strain frac- 
ture toughness. Auxetic materials that have been pro- 
duced include honeycombs [13], polymer foams [1], 
metal foams [2], microporous polymers [3, 5] and 
polymer gels [6]. Recently it has also been shown that 
an auxetic material can be designed at the molecular 
level [t 2] and synthesis routes for such materials have 
been proposed [15]. This opens up the possibility of 
producing materials with the same range of interesting 
properties but that are intrinsically much stronger and 
stiffer. 

Composite materials exhibiting a negative 
Poisson's ratio have been examined theoretically [9, 
t6, 17] and experimental evidence for benefits in such 
systems is accumulating [t8, 19]. A negative Poisson's 
ratio ifi a composite may be achieved in a number of 
ways. Firstly, suitable network structures can be cre- 
ated in a composite made of conventional materials 
[17] (so-called "network-embedded" composites), for 
example a re-entrant network of high-modulus mater- 
ial embedded in a low-modulus matrix. Alternatively 
either the matrix or the reinforcement itself may be 
auxetic. These two latter cases are the subject of this 
paper. Fibrous structures can be made from auxetic 
microstructures, as has been seen in polymeric mater- 
ials [3]. Alternatively either fibres or matrix may be 
fabricated from molecular auxetics. 

tn the case of network-embedded composites, 
simple rule-of-mixtures approaches to approximate 
the elastic properties have not only been shown to be 
quantitatively very inaccurate but they also fail to 
predict the existence of novel effects [t7], Finite- 
element methods were used to model the microstruc- 
tures. In this paper we return to the conventional 
contifiuous-fibre composite with either matrix or fibre 
materials having negative Poisson's ratios. Again a 
rule of mixtures approach is not expected to apply 
since assumptions of uniform Poisson's ratios are 
made in such models. 

The elastic properties of conventional unidirec- 
tional fibre-reinforced composites can reasonably be 
predicted by conventional rule-of-mixtures expres- 
sions, provided the usual assumptions are made. An 
earlier paper [17] has shown that although the results 
of rule-of-mixtures calculations are borne out by 
results obtained from finite-element analysis for 
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longitudinal loading of the undirectional composite, 
there is no agreement for transverse loading. The 
purpose of this paper is to study how well the rule-of- 
mixtures predictions of elastic properties agree with 
that of finite-element analysis for a continuous-fibre 
composite made from fibres and/or matrix materials 
with negative Poisson's ratio, and to see the possible 
beneficial effects produced by using auxetic materials. 

2. Finite-element model 
A two-dimensional representation of a unidirectional 
fibre reinforced composite is shown in Fig. 1 with the 
matrix material shaded. The longitudinal axis is 
shown by 1 and the transverse axis by 2. For conveni- 
ence a two-dimensional model is used for direct com- 
parison with the analytical model. By the application 
of appropriate boundary conditions the representa- 
tiort in Fig. 1 can be taken as a unit cell whose 
replication throughout space defines the material. 
Tensile loading is applied both longitudinally and 
transversely to determine the composite Young's 
moduli El, E 2 and Poisson's ratios vl2 , YZl. 

It is only necessary to model one-quarter of the cell 
and apply appropriate boundary conditions because 
of the symmetry of the reinforcement and loading 
applied. Such models are shown for two cases of 
differing fibre volume fraction in Fig. 2a and b. The 
two lines of mirror symmetry on the 1 and 2 axes have 
roller-bearing boundary conditions to allow for trans- 
verse contraction or expansion under tensile loading. 
Loading is applied by a small displacement perpendi- 
cular to one of the two free edges, the choice depend- 
ing on whether we wish to apply longitudinal or 
transverse loading. Typically, values of strain of a b o u t  
5% were used. The finite-element grids shown in 
Fig. 2a and b comprised eight noded quadrilaterals 
and a proprietary finite-element package [203 was 
used. 
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Figure 1 Uni t  cell of cont inuous-f ibre  Composite. Fibre reinforce- 
ment  is unshaded ,  mat r ix  is shaded  region. 
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Figure 2 Finite element  grids (a) for case 1 (Vf = 0.462), (b) for 
case 2 (Vf = 0.286). 

A typical deformation of the model under a longit- 
udinal tensile load is shown in Fig. 3 for a composite 
with conventional constituents. The matrix is left un- 
shaded to make the deformation clearer. There is a 
constant transverse displacement on the transverse 
edge and so it is a straightforward matter to determine 
the Poisson's ratio. However, under transverse load- 
ing the fibres and matrix undergo different displace- 
ments if left to displace freely. This condition cannot 
occur in the real material since the transverse bound- 
aries of any repeating unit cell within the bulk material 
will remain straight due to symmetry, 

This problem has been overcome [17] by applying a 
moving constraint boundary condition at the free edge 
as described in detail elsewhere [17]. The method 
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Figure 3 Typical deformed grid (solid lines, undeformed grid shown 
in broken lines) under longitudinal loading (along 1 axis). 

consists of coupling together all the appropriate de- 
grees of freedom (in this case they are the 
1-directed freedoms on the face perpendicular to the 
1-direction) so that they have the same displacement. 
This means that one of the unknown variables in each 
of the simultaneous equations to be solved, to obtain 
nodal displacements, is chosen to have some unknown 
value. This approach is explained in standard texts 
[21] on the finite-element method. 

3 .  Veri f icat ion of model accuracy 
For continuous-fibre composites with loading parallel 
to the fibres, experimental and theoretical work 
[22-24] have shown that the simple rule-of-mixtures 
equations for the longitudinal composite modulus (El) 
and the major Poisson's ratio (v12) are accurate within 
1 or 2% for Poisson's ratios in the range 0.2 0.4. These 
are 

and 
E 1 = E f g f  + E m V  m (1) 

V 1 2  = VmV m ~- v f V ' f  (2) 

where Ef ,  vf, ~ and Em, Vm, Vm are the Young's 
modulus, Poisson's ratio and volume fraction for the 
fibre and matrix, respectively. 

The accuracy of the finite-element model can there- 
fore be tested by comparison of the results from it with 
that obtained from the above two equations. These 
equations have been tested and accurately represent 
the Young's modulus and Poisson's ratio under vari- 
ous combinations of Ef and Em and further details are 
given in an earlier paper [17]. 

4. R e s u l t s  
Table I summarizes the material properties and vol- 
ume fractions used in the finite-element models. The 
rule-of-mixtures equations for longitudinal loading of 

the continuous-fibre composite were given in the pre- 
vious section. For transverse loading the transverse 
composite modulus (E2) is approximately given by 

E2 = ~ff -I- g m  / (3) 

and 

E 2 
v 2 1  ~ Y 1 2 ~ -  (4) 

Equation 3 has been shown experimentally to give 

T A B L E  I Geometries and properties for continuous-fibre com- 

posite models 

Geometries 
Case 1: fibre volume fraction Vf = 0.462 
Case 2: fibre folume fraction Vf = 0.286 

Property variations 
Moduli: Ef = 76 GPa,  E m = 3 G P a  
Poisson's  ratio vf at - 0.9, - 0.7, - 0.5, - 0.3, 0.3, 0.49 
Poisson's  ratio v m at - 0.9, - 0.7, - 0.5, 0.3, 0.3, 0.49 
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Figure 4 Plots of (a) transverse composite modulus  E 2 and (b) 
composite Poisson's  ratio v21 versus fibre modulus  El. (A) Case 1, 
rule of mixtures; (B) case 1, finite-element analysis, vf = v m = 0.3. 
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rather poor results [22, 23]. This is borne out in 
Fig. 4a which is a plot of E 2 against fibre modulus 
when vf = vm = 0.3 and E m = 3 GPa. Surprisingly, the 
agreement between the rule-of-mixtures results and 
the finite-element results for v21 is much closer as can 
be seen in Fig. 4b. 

In Fig. 5a v12 is plotted as a function of the fibre 
Poisson's ratio with the matrix Poisson's ratio fixed at 
0.3 while in Fig. 5b it is plotted as a function of the 
matrix Poisson's ratio with that of the fibre fixed at 
0.3. In both cases Ef = 76 G P a  and E m = 3 GPa. Both 
figures show the exact agreement between the rule-of- 
mixtures and finite-element results. There was also 
exact agreement between the rule-of-mixtures and 
finite-element results for E 1 as the Poisson's ratios of 
the fibre and matrix constituents were independently 
varied. This shows that the accuracy of E1 and v12 are 
unaffected by the differences in the Poisson's ratios of 
the constituents in a continuous fibre composite. 

The effect of applying transverse loading can be 
seen for E 2 in Fig. 6a and b and for v2~ in Fig. 7a and b 
when either (a) the fibre or (b) the matrix Poisson's 
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Figure 5 Plot of longitudinal composite Poisson's ratio v~2 versus 
(a) fibre Poisson's ratio and (b) matrix Poisson's ratio (A) Case 1, 
rule of mixtures; (B) case 1, finite-element analysis; (C) case 2, rule of 
mixtures; (D) case 2, finite-element analysis. 
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Figure 6 Plot of transverse composite modulus E2 versus (a) fibre 
Poisson's ratio and (b) matrix Poisson's ratio. (A) Case 1, rule of 
mixtures; (B) case 1, finite-element analysis; (C) case 2, Rule of 
mixtures; (D) case 2, finite-element analysis. The dashed line in 
Fig. 6b represents the modified Equation 3 with E m replaced by 
Em (l_V2m) - 1. 

ratio is varied. The discrepancy between the rule-of- 
mixtures and finite-element results for E2 as the fibre 
Poisson's ratio is varied is clearly seen in Fig. 6a. In 
Fig. 6b where the matrix Poisson's ratio is varied we 
see a most interesting effect. For  vm = 0 we obtain 
exact agreement between Equation 3 and the finite- 
element results. However as v m varies away from zero 
the effective modulus increases. Considering the ma- 
trix Poisson's ratio (Vm) between -- 0.5 and 0.5 there is 
clearly symmetry about Vm = 0. It is clear that not 
only is the rule-of-mixtures formula unable to predict 
the non-linear nature of the variation between E 2 and 
Vm, but it also fails to show the rapidly increasing 
value of E2 as a result of the interaction between the 
constituents of the composite due to the difference in 
their Poisson's ratios. In particular, for v < - 0.5 a 
very considerable increase in E2 occurs. 

In Fig. 7a and b v21 is plotted against vf and vm, 
respectively. Again it can be seen that there is a very 
large variation of v21 for Vm < --0.5. 
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Figure 7 Plot of transverse composite Poisson's ratio v21 versus (a) 
fibre Poisson's ratio and (b) matrix Poisson's ratio. (A) Case I, rule 
of mixtures; (B) case 1, finite-element analysis; (C) case 2, rule of 
mixtures; (D) case 2, finite-element analysis. 

5. Discussion 
The results from the rule-of-mixtures Equations 1 and 
2 for E 1 and v12 for a continuous-fibre composite 
agree with the finite-element results for all combina- 
tions of properties of the constituent fibre and matrix 
considered in this paper. Although Equations 1 and 2 
are not strictly exact expressions they have been 
shown to be accurate within experimental error 
[22-24]. Hence E 1 is unaffected by changes in either 
the matrix or fibre Poisson's ratios. 

The relationship in Equation 3 and consequently in 
Equation 4 has, however, been found not to hold even 
where the Poisson's ratio of the fibre and matrix are 
both equal and positive. Early investigators [22, 23] 
have shown that the value of E 2 given by Equation 3 
constitutes a lower bound on the modulus of elasticity 
of macroscopically isotropic composites, and so rep- 
resents a lower bound on composite Young's modulus 
irrespective of phase geometry. 

The most interesting result obtained here is the 
extent of the improvement  to the composite transverse 

modulus. E2,  for matrix Poisson's ratios less than 
- 0 . 3  (see Fig. 6b). The simple rule-of-mixtures ex- 

pression of Equation 3 assumes equal Poisson's ratios 
in both constituents and does not allow for differential 
contractions in the matrix and reinforcement. As the 
composite is loaded the matrix tries to deform lat- 
erally. This lateral deformation is resisted by the much 
stiffer reinforcement. The resulting reduction in lateral 
displacement produces a concommitant  reduction in 
the loading direction, the extent of which is defined by 
the matrix's Poisson's ratio. For  the case of an in- 
finitely stiff reinforcement the matrix is effectively in a 
state of plane strain and the apparent modulus of 
the matrix is increased by a factor (l-Vm2) - 1. In this 
case Equation 3 is modified by E m ~ Em'  where E m' = 
Em(1 _ _  V 2 ) -  1 

The result of this approximation improves the pre- 
diction of E 2 [24]. However for v m ~ - - -  0.3 the change is 
less than 10%. For isotropic materials the full range of 
values available is - 1 ~< v ~< �89 So for v approaching 
- 1 the multiplicative factor approaches infinity. This 

assumes, of course, that the fibre is infinitely stiff. This 
modified relationship is plotted in Fig. 6b and repres- 
ents an upper limit of improvement to E 2 simply by 
altering the value of v m alone. It is quite surprising 
how close the results are. The value of Ef = 76 G P a  
represents a very conservative value of the reinforcing 
modulus (e.g. for a glass fibre). By using carbon or 
Kevlar fibres (El > 500 G P a  possible) we would ex- 
pect an even closer fit to the theoretical prediction. 
Altering vf makes a relatively small change to E 2 
(Fig. 6a) because the matrix modulus is too low to 
significantly affect the fibre lateral strain. 

This explanation can also be applied to the longit- 
udinal case. Here there is no restriction on the Poisson 
contraction, because of the axial symmetry of the 
reinforcement, and hence E 1 is not altered by chang- 
ing vf or v m. 

For a fibre volume fraction of Vf = 0.462 and vf 
= v m = 0.3 we obtained E1 = 37.0 GPa,  E 2 

= 6.0 GPa,  v12 = 0.3, v21 = 0.05 [17]. When the ma- 
trix Poisson's ratio was altered to Vm = -- 0.9 but all 
other properties were kept constant we obtained Ea 
= 37.0 GPa,  E z = 23.0 GPa,  vl2 ~-- - -  0.34 and v2~ 
- 0.22. Thus the composite is much more nearly 

isotropic and E 2 has increased nearly four times. The 
theoretical maximum improvement for Vm = --0.9 
would be 4.22 times the rule of mixtures value. 

6. Conclusions 
It has been shown that if the constituents of a continu- 
ous-fibre composite consist of auxetic materials the 
conventional rule-of-mixtures equations can be used 
to accurately predict the longitudinal composite 
modulus and Poisson's ratio. The simple rule-of-mix- 
tures expressions provides a lower bound for the 
transverse modulus. By modifying this to allow for 
Poisson contraction of the matrix an upper bound is 
obtained that is reasonably accurate for most continu- 
ous-fibre composites. Most importantly, an auxetic 
material can be used as the matrix in a continuous- 
fibre composite in order to sharply increase the value 
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of  the  t r a n s v e r s e  c o m p o s i t e  m o d u l u s  w i t h o u t  r e d u c -  

t i o n  of  the  l o n g i t u d i n a l  m o d u l u s .  
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